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1 Introduction

Credit risk is the distribution of financial losses due to unexpected changes in

the credit quality of a counterparty in a financial agreement. Examples range

from agency downgrades to failure to service debt to liquidation. Credit risk

pervades virtually all financial transactions.

The distribution of credit losses is complex. At its center is the probability

of default, by which we mean any type of failure to honor a financial agreement.

To estimate probability of default, we need to specify

• a model of investor uncertainty;

• a model of the available information and its evolution over time; and

• a model definition of the default event.

However, default probabilities alone are not sufficient to price credit sensitive

securities. We need, in addition,

• a model for the riskfree interest rate;

• a model of recovery upon default; and

• a model of the premium investors require as compensation for bearing

systematic credit risk.

The credit premium maps actual default probabilities to market-implied prob-

abilities that are embedded in market prices. To price securities that are sen-

sitive to the credit risk of multiple issuers and to measure aggregated portfolio

credit risk, we also need to specify

• a model that links defaults of several entities.

There are three main quantitative approaches to analyzing credit. In the

structural approach, we make explicit assumptions about the dynamics of a

firm’s assets, its capital structure, and its debt and share holders. A firm

defaults if its assets are insufficient according to some measure. In this situation

a corporate liability can be characterized as an option on the firm’s assets.

The reduced form approach is silent about why a firm defaults. Instead, the

dynamics of default are exogenously given through a default rate, or intensity.

In this approach, prices of credit sensitive securities can be calculated as if

they were default free using an interest rate that is the riskfree rate adjusted
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by the intensity. The incomplete information approach combines the structural

and reduced form models. While avoiding their difficulties, it picks the best

features of both approaches: the economic and intuitive appeal of the structural

approach and the tractability and empirical fit of the reduced form approach.

This article reviews these approaches in the context of the multiple facets

of credit modeling that are mentioned above. Our goal is to provide a concise

overview and a guide to the large and growing literature on credit risk.

2 Structural credit models

The basis of the structural approach, which goes back to Black & Scholes

(1973) and Merton (1974), is that corporate liabilities are contingent claims

on the assets of a firm. The market value of the firm is the fundamental source

of uncertainty driving credit risk.

2.1 Classical approach

Consider a firm with market value V , which represents the expected discounted

future cash flows of the firm. The firm is financed by equity and a zero coupon

bond with face value K and maturity date T . The firm’s contractual obligation

is to repay the amount K to the bond investors at time T . Debt covenants

grant bond investors absolute priority: if the firm cannot fulfil its payment

obligation, then bond holders will immediately take over the firm. Hence the

default time τ is a discrete random variable given by

τ =

{
T if VT < K

∞ if else.
(1)

Figure 1 depicts the situation graphically.

To calculate the probability of default, we make assumptions about the

distribution of assets at debt maturity under the physical probability P . The

standard model for the evolution of asset prices over time is geometric Brow-

nian motion:

dVt

Vt

= µdt + σdWt, V0 > 0, (2)

where µ ∈ R is a drift parameter, σ > 0 is a volatility parameter, and W is a

standard Brownian motion. Setting m = µ− 1
2
σ2, Ito’s lemma implies that

Vt = V0e
mt+σWt .
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Figure 1: Default in the classical approach.

Since WT is normally distributed with mean zero and variance T , default prob-

abilities p(T ) are given by

p(T ) = P [VT < K] = P [σWT < log L−mT ] = Φ

(
log L−mT

σ
√

T

)

where L = K
V0

is the initial leverage ratio and Φ is the standard normal distri-

bution function.

Assuming that the firm can neither repurchase shares nor issue new senior

debt, the payoffs to the firm’s liabilities at debt maturity T are as summarized

in Table 1. If the asset value VT exceeds or equals the face value K of the bonds,

the bond holders will receive their promised payment K and the shareholders

will get the remaining VT−K. However, if the value of assets VT is less than K,

the ownership of the firm will be transferred to the bondholders, who lose the

amount K −VT . Equity is worthless because of limited liability. Summarizing,

the value of the bond issue BT
T at time T is given by

BT
T = min(K, VT ) = K −max(0, K − VT ).

This payoff is equivalent to that of a portfolio composed of a default-free loan

with face value K maturing at T and a short European put position on the

assets of the firm with strike K and maturity T . The value of the equity ET

4



Assets Bonds Equity

No Default VT ≥ K K VT −K

Default VT < K VT 0

Table 1: Payoffs at maturity in the classical approach.

at time T is given by

ET = max(0, VT −K),

which is equivalent to the payoff of a European call option on the assets of the

firm with strike K and maturity T .

Pricing equity and credit risky debt reduces to pricing European options.

We consider the classical Black-Scholes setting, where riskfree interest rates

r > 0 are constant and firm assets V follow geometric Brownian motion (2).

The equity value is given by the Black-Scholes call option formula:

E0 = V0Φ(d1)− e−rT KΦ(d2) (3)

where

d1 =
(r + 1

2
σ2)T − log L

σ
√

T
and d2 = d1 − σ

√
T .

While riskfree zero coupon bond prices are just K exp(−rT ) with T being the

bond maturity, the value of the corresponding credit-risky bonds is

BT
0 = Ke−rT − P (σ, T,K, r, V0)

where P is the Black-Scholes put option formula. We note that the value of

the put is just equal to the present value of the default loss suffered by bond

investors. This is the discount for default risk relative to the riskfree bond,

which is valued at K exp(−rT ). This yields

BT
0 = V0 − V0Φ(d1) + e−rT KΦ(d2)

which together with (3) proves the market value identity

V0 = E0 + BT
0 .
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While clearly both equity and debt values depend on the firm’s leverage ratio,

this equation shows that their sum does not. This shows that the Modigliani &

Miller (1958) theorem holds also in the presence of default. This result asserts

that the market value of the firm is independent of its leverage, see Rubinstein

(2003) for a discussion. This is not the case for all credit models as we show

below.

The credit spread is the difference between the yield on a defaultable

bond and the yield an otherwise equivalent default-free zero bond. It gives

the excess return demanded by bond investors to bear the potential default

losses. Since the yield y(t, T ) on a bond with price b(t, T ) satisfies b(t, T ) =

exp(−y(t, T )(T − t)), we have for the credit spread S(t, T ) at time t,

S(t, T ) = − 1

T − t
log

(
BT

t

B̄T
t

)
, T > t, (4)

where B̄T
t is the price of a default-free bond maturing at T . The term structure

of credit spreads is the schedule of S(t, T ) against T , holding t fixed. In the

Black-Scholes setting, we have B̄T
t = K exp(−r(T − t)) and we obtain

S(0, T ) = − 1

T
log

(
Φ(d2) +

1

L
erT Φ(−d1)

)
, T > 0,

which is a function of maturity T , asset volatility σ (the firm’s business risk),

the initial leverage ratio L, and riskfree rates r. Letting leverage be 80% and

riskfree rates be 6%, in Figure 2 we plot the term structure of credit spreads

for varying asset volatilities.

2.2 First-passage approach

In the classical approach, firm value can dwindle to almost nothing without

triggering default. This is unfavorable to bondholders, as noted by Black &

Cox (1976). Bond indenture provisions often include safety covenants that

give bond investors the right to reorganize a firm if its value falls below a

given barrier.

Suppose the default barrier D is a constant valued in (0, V0). Then the

default time τ is a continuous random variable valued in (0,∞] given by

τ = inf{t > 0 : Vt < D} (5)

Figure 3 depicts the situation graphically. In the Black-Scholes setting with
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Figure 2: Term structure of credit spreads, varying asset

volatility σ, in the classical approach.

asset dynamics (2), default probabilities are calculated as

p(T ) = P [MT < D] = P [min
s≤T

(ms + σWs) < log(D/V0)].

where M is the historical low of firm values,

Mt = min
s≤t

Vs.

Since the distribution of the historical low of an arithmetic Brownian motion

is inverse Gaussian,1 we have

p(T ) = Φ

(
log(D/V0)−mT

σ
√

T

)
+

(
D

V0

) 2m
σ2

Φ

(
log(D/V0) + mT

σ
√

T

)
. (6)

We check whether this default definition is consistent with the payoff to

investors. We need to consider two scenarios. The first is when D ≥ K. If the

firm value never falls below the barrier D over the term of the bond (MT > D),

then bond investors receive the face value K < V0 and the equity holders

receive the remaining VT −K. However, if the firm value falls below the barrier

1To find that distribution, one first calculates the joint distribution of the pair
(Wt, mins≤t Ws) by the reflection principle. Girsanov’s theorem is used to extend to the
case of Brownian motion with drift.
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Figure 3: Default in the first-passage approach.

at some point during the bond’s term (MT ≤ D), then the firm defaults. In this

case the firm stops operating, bond investors take over its assets D and equity

investors receive nothing. Bond investors are fully protected: they receive at

least the face value K upon default and the bond is not subject to default risk

any more.

This anomaly does not occur if we assume D < K so that bond holders

are both exposed to some default risk and compensated for bearing that risk.

If MT > D and VT ≥ K, then bond investors receive the face value K and the

equity holders receive the remaining VT − K. If MT > D but VT < K, then

the firm defaults, since the remaining assets are not sufficient to pay off the

debt in full. Bond investors collect the remaining assets VT and equity becomes

worthless. If MT ≤ D, then the firm defaults as well. Bond investors receive

D < K at default and equity becomes worthless.

Reisz & Perlich (2004) point out that if the barrier is below the bond’s face

value, then our earlier definition (5) does not reflect economic reality anymore:

it does not capture the situation when the firm is in default because VT < K

although MT > D. We discuss two ways to avoid this inconsistency. The first is

to re-define default as firm value falling below the barrier D < K at any time

before maturity or firm value falling below face value K at maturity. Formally,
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the default time is now given by

τ = min(τ 1, τ 2), (7)

where τ 1 is the first passage time of assets to the barrier D and τ 2 is the

maturity time T if assets VT < K at T and ∞ otherwise. In other words,

the default time is defined as the minimum of the first-passage default time

(5) and Merton’s default time (1). This definition of default is consistent with

the payoff to equity and bonds. Even if the firm value does not fall below the

barrier, if assets are below the bond’s face value at maturity the firm defaults.

We get for the corresponding default probabilities

p(T ) = 1− P [min(τ 1, τ 2) > T ]

= 1− P [τ 1 > T, τ 2 > T ]

= 1− P [MT > D, VT > K]

= 1− P [min
t≤T

(mt + σWt) > log(D/V0),mT + σWT > log L]

Using the joint distribution of an arithmetic Brownian and its running mini-

mum, we get immediately

p(T ) = Φ

(
log L−mT

σ
√

T

)
+

(
D

V0

) 2m
σ2

Φ

(
log(D2/(KV0)) + mT

σ
√

T

)
. (8)

The corresponding payoff to equity investors at maturity is

ET = max(0, VT −K)1{MT≥D} (9)

where 1A is the indicator function of the event A. The equity position is equiv-

alent to a European down-and-out call option position on firm assets V with

strike K, barrier D < K, and maturity T . Pricing equity reduces to pricing

European barrier options. In the Black-Scholes setting with constant interest

rates and asset dynamics (2), we find the value

E0 = V0

[
Φ

(
ν̄T − log L

σ
√

T

)
−

(
D

V0

) 2r
σ2 +1

Φ

(
ν̄T + log(D2/(KV0))

σ
√

T

)]

−Ke−rT

[
Φ

(
νT − log L

σ
√

T

)
−

(
D

V0

) 2r
σ2−1

Φ

(
νT + log(D2/(KV0))

σ
√

T

)]
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where ν = r − σ2/2 and ν̄ = r + σ2/2. The value of the bond is given as the

residual value V − E.

The second way to avoid the inconsistency discussed above is to introduce

a time-varying default barrier D(t) ≤ K for all t ≤ T . For some constant

k > 0, consider the deterministic function

D(t) = Ke−k(T−t) (10)

which can be thought of as the face value of the debt, discounted back to time

t at a continuously compounding rate k. The firm defaults at

τ = inf{t > 0 : Vt < D(t)}. (11)

Observing that

{Vt < D(t)} = {(m− k)t + σWt < log L− kT}

we have for the default probability

p(T ) = P [min
t≤T

((m− k)t + σWt) < log L− kT ].

Now we have reduced the problem to calculating the distribution of the his-

torical low of an arithmetic Brownian motion with drift m− k. We get

p(T ) = Φ

(
log L−mT

σ
√

T

)
+

(
Le−kT

) 2
σ2 (m−k)

Φ

(
log L + (m− 2k)T

σ
√

T

)
. (12)

The equity position is a European down-and-out call option on firm assets

V with strike K, time-varying barrier D(t), and maturity T . Merton (1973)

gives a closed-form expression for the equity value. The position of the bond

investors is defined through the corresponding payoffs. At default investors

receive D(τ) ≤ K. In case the discount factor k is set equal to the risk-free

rate r, bond investors receive an equivalent but default-free zero bond. This

is sometimes called “equivalent recovery.” If the firm does not default, they

receive the full face value K at maturity. Bond values are given by the residual

V − E.

The simple capital structure underlying our calculations so far is unrealis-

tic. Pricing of individual bond issues can be performed under the assumption

that firm default implies default on all outstanding debt. Suppose the firm

has issued, among other debt, a zero coupon bond paying 1 at T if there is

no default and R at T if the firm defaults by T . Here R ∈ [0, 1] specifies the
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Figure 4: Term structure of credit spreads, varying asset

volatility σ in the first-passage model.

recovery. In the absence of arbitrage, there is a market-implied probability Q

such that the price of the bond is given as the expected discounted payoff

under Q. We get for the bond price

e−rT EQ[R1{τ≤T} + 1{τ>T}] = e−rT − e−rT (1−R)q(T ) (13)

where q(T ) is the market-implied default probability. This probability can

be calculated using the formulas (8) and (12) for p(T ) by setting µ = r,

corresponding to the asset dynamics under the market-implied probability Q.

See Section 2.4 below for more details. Formula (13) says that the bond price

is given by the price the bond would have if it were default risk free minus the

present value of the default losses. From (4) we obtain for the credit spread

associated with the bond

S(0, T ) = − 1

T
log

(
1− (1−R)q(T )

)
, T > 0.

Consider a first passage model with time-varying default barrier D(t) given by

(10). Letting R = 50%, L = 60% and r = k = 6%, in Figure 4 we plot the

term structure of credit spreads for varying asset volatilities. With increasing

maturity T , the spread asymptotically approaches zero. This is at odds with

empirical observation: spreads tend to increase with increasing maturity, re-

flecting the fact that uncertainty is greater in the distant future than in the
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near term. This discrepancy follows from two model properties: the firm value

grows at a positive (riskfree) rate and the capital structure is constant. We

can address this issue by assuming that the total debt grows at a positive

rate, or that firms maintain some target leverage ratio as in Collin-Dufresne

& Goldstein (2001).

2.3 Dependent Defaults

Credit spreads of different issuers are correlated through time. Two patterns

are found in time series of spreads. The first is that spreads vary smoothly

with general macro-economic factors in a correlated fashion. This means that

firms share a common dependence on the economic environment, which results

in cyclical correlation between defaults. The second relates to the jumps in

spreads: we observe that these are often common to several firms or even

entire markets. This suggests that the sudden large variation in the credit risk

of one issuer, which causes a spread jump in the first place, can propagate to

other issuers as well. The rationale is that economic distress is contagious and

propagates from firm to firm. A typical channel for these effects are borrowing

and lending chains. Here the financial health of a firm also depends on the

status of other firms as well.

We want to incorporate these two default correlation mechanisms into the

structural approach to credit. To introduce cyclical correlation, it is natural

to assume that firm values of several firms are correlated through time. This

corresponds to common factors driving asset returns. We consider the simplest

case with two firms and asset dynamics

dV i
t

V i
t

= µidt + σidW i
t , V i

0 > 0, i = 1, 2,

where µi ∈ R is a drift parameter, σi > 0 is a volatility parameter, and

(W 1,W 2) is a two-dimensional Brownian motion with correlation ρ. That is,

Cov (W i
t ,W

j
t ) = ρt.

In the classical approach, we then obtain for the joint probability of firm

1 to default at T1 (the fixed debt maturity) and firm 2 to default at T2

p(T1, T2) = Φ2

(
ρ,

log(K1/V
1
0 )−m1T1

σ1

√
T1

,
log(K2/V

2
0 )−m2T2

σ2

√
T2

)
(14)

where Φ2(ρ, ·, ·) is the bivariate standard normal distribution function with

correlation ρ and mi = µi − 1
2
σ2

i . In the first-passage approach we get for the
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joint probability of firm 1 to default before T1 and firm 2 to default before T2

p(T1, T2) = Ψ2

(
ρ; T1, T2; log(D1/V

1
0 ), log(D2/V

2
0 )

)

where Di is the constant default barrier of firm i and, holding x, y ≤ 0 fixed,

Ψ2(ρ; ·, ·; x, y) is the bivariate inverse Gaussian distribution function with cor-

relation ρ. This function is given in closed-form in Iyengar (1985) and Zhou

(2001a).

The joint default probability p provides a comprehensive characterization

of the default risk of both firms. It describes simultaneously the individual

likelihood of a firm to default and the likelihood that both firms default jointly.

In the portfolio context we are often interested in the component of p describing

the default dependence structure only. It turns out that we can isolate this

dependence structure from p by means of a copula. Formally, the copula C

of the default times (τ1, τ2) is a function that maps the individual default

probabilities pi into the joint default probability p,

p(T1, T2) = C
(
p1(T1), p2(T2)

)
.

There is only one such mapping C if p is continuous.2 In this case we can also

go the other way around, and find C from a given p through

C(u, v) = p
(
p−1

1 (u), p−1
2 (v)

)

for all u and v in [0, 1]. Here p−1
i is the (generalized) inverse of the individual

default probability. Accordingly, in the classical approach the default depen-

dence structure can be represented through the Normal copula. In the first

passage approach, the default dependence structure is given by the inverse

Gaussian copula.

The default copula measures the complete non-linear dependence between

the defaults. It satisfies the Fréchet bound inequality

max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v)

for all u and v in [0, 1], since it is a joint distribution function with standard

uniform marginals. If C takes on the lower bound, defaults are perfectly nega-

tively correlated. This corresponds to an asset correlation of ρ = −1 and means

that the time of default of one firm is a decreasing function of the default time

2A complete account of copulas can be found in Nelsen (1999).
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of the other firm. If C takes on the upper bound, defaults are perfectly posi-

tively correlated. This corresponds to an asset correlation of ρ = 1 and means

that one default time is an increasing function of the other. In case p1 = p2,

both firms default literally at the same time. Finally, it is easy to check that

in case C(u, v) = uv defaults must be independent.

The function-valued copula C seems however not to be the most con-

venient measure for non-trivial default dependence. A bivariate scalar-valued

measure is often more intuitive. One such measure is Spearman’s rank corre-

lation, cf. Embrechts, McNeil & Straumann (2001). For the default times τ1

and τ2 it is easily constructed as the linear correlation of the copula C, i.e.

ρτ = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3.

Rank default correlation ρτ is a function of the copula C only. It describes

the degree of monotonic default dependence through a number in [−1, 1], with

the left (right) endpoint referring to perfect negative (positive) default depen-

dence. Rank correlation should be contrasted with linear correlation of the de-

fault times τi and linear correlation of the Bernoulli default indicators 1{τi≤T}.
These measures are often used in the literature; they describe the degree of

linear default dependence through a number in [−1, 1]. Unless the default

times/default indicators are jointly elliptically distributed, linear correlation

based measures will misrepresent default dependence: they do not cover the

non-linear part of the dependence. Rank correlation ρτ does not suffer from

this defect: it summarizes monotonic dependence.

Asset correlation captures the dependence of firms on common economic

factors in a natural way. Modeling default contagion effects is much more dif-

ficult. A straightforward idea is to consider a jump-diffusion model for firm

value. We would stipulate that a downward jump in the value of a given firm

triggers subsequent jumps in the firm values of other firms with some prob-

ability. This would correspond to the propagation of economic distress. This

approach fails however due to the lack of (closed-form) results on the joint

distribution of firms’ historical asset lows. This is what we need to calculate

the probability of joint default.

A more successful attempt is to introduce interaction effects through the

default barriers Di. Giesecke & Weber (2004) suppose the barrier is random

and depends on the firm’s liquidity state, which in turn depends on the default

status of the firm’s counterparties. If a firm’s liquidity reserves are stressed due

to a payment default of a counterparty, it finances the loss by issuing more
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Figure 5: Actual vs. market-implied likelihood of default.

debt. This increases the default barrier: the firm is now more likely to default,

all else being equal. With no counterparty defaults the default barrier remains

unaffected. This model allows a closed-form approximation of the credit port-

folio loss distribution.

2.4 Credit premium

Issuers of credit sensitive securities share a common dependence on the eco-

nomic environment. It follows that aggregated credit risk cannot be diversified

away. This undiversifiable or systematic risk commands a premium, which

compensates risk-averse investors for assuming credit risk.

The credit premium is empirically well-documented and theoretically com-

plex. Its importance relates to the uses of a quantitative credit model. As a

default probability forecasting tool, a credit model must reflect the historical

default experience. As a tool for pricing credit sensitive securities, it must fit

observed market prices. To make use of both market data and historical default

data in the calibration and application of a credit model, we need to under-

stand the relationship between actual defaults and defaultable security prices.

Here the risk premium comes into play: it maps the actual likelihood of default

p(T ) into the market-implied likelihood of default q(T ) that is embedded in

security prices, see (13).

We examine the difference between the two using a simple example, see

Figure 5. We consider a one-period market with two securities, a riskfree bond
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paying 10 and trading at 10 (riskfree rates are zero) and a defaultable bond

trading at 5, that pays 20 in case of no default and zero in case the issuer

defaults by the end of the trading period. Suppose the actual probability of

default is p = 0.5. This is however not the probability the market uses for

pricing the bond: it would lead to a price of p·20 = 10, which is double the price

the bonds is actually trading. At this price, risk-averse investors would rather

put their money into the riskfree bond that costs 10 as well, unless they get a

discount as compensation for the default risk. The market requires a discount

of 5, and the corresponding price reflects the market-implied probability of

default q, which satisfies 5 = (1 − q)20. This yields q = 0.75, which is bigger

than the actual probability of default p = 0.5. To account for risk aversion in

calculating the expected payoff of the defaultable bond, the market puts more

weight on unfavorable states of the world in which the firm defaults.

In the structural credit models with asset dynamics (2) and constant risk-

free rates, the situation is only a little more complicated. Here the relationship

between actual probabilities of events P and market-implied probabilities Q is

well understood. For a fixed finite T > 0, it is characterized through a random

variable ZT , called the Radon-Nikodym density. In the absence of arbitrage

opportunities, the density is uniquely determined through market prices of

credit sensitive securities such as equity or debt as

ZT = exp

(
−αWT − 1

2
α2T

)
(15)

where W is the Brownian motion driving the uncertainty about firm assets and

the constant α is the risk premium for this uncertainty. It is given as the excess

return on firm assets over the riskfree return per unit of firm risk, measured

in terms of asset volatility:

α =
µ− r

σ
. (16)

If the market is risk averse, then α is positive: investors in credit-risky firm

assets require a return that is higher than the riskfree return. The excess return

on any credit sensitive security is given by its volatility times α.

Girsanov’s theorem implies that the process defined by WQ
t = Wt + αt is

a Brownian motion under the market-implied probability Q. Hence the firm

value grows at the riskfree rate r under Q; its dynamics are given by

dVt

Vt

= rdt + σdWQ
t , V0 > 0. (17)
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Above we obtained the actual default probability p when the firm grows at

a rate µ. Setting µ = r in the formulas for p(T ) yields the market-implied

default probability q(T ) = EQ[1{τ≤T}] = Q[τ ≤ T ]. Prices of securities are

given through their expected discounted payoff under the probability Q.

2.5 Calibration

The calibration of a quantitative credit model is closely related to its use. To

price single-name credit sensitive securities using a structural model, we need

to calibrate the following vector of constant parameters:

(r, σ, V0, K,D, T ),

The first three parameters refer to firm value dynamics, whereas the remaining

parameters relate to the debt of the firm. The barrier D is relevant only in

the first passage approach. To use the model to forecast actual default proba-

bilities, we need to calibrate additionally the growth rate µ of firm assets or,

equivalently, the risk premium α. In a multiple firm setting we need to estimate

asset correlations in addition to the single-name parameters.

Firm values are not directly observable. The goal is to estimate the param-

eters of the firm value process based on equity prices, which can be observed for

public firms. Riskfree interest rates can be estimated from default-free Trea-

sury bond prices via standard procedures. We bypass estimation of face value

and maturity of firm debt from balance sheet data, which is non-trivial given

the complex capital structure of firms. In practice these parameters are often

fixed ad-hoc, as some average of short-term and long-term debt, for example.

We introduce a more reasonable solution to this problem later.

We consider the classical approach. Given equity prices Et and equity

volatility σE, Jones, Mason & Rosenfeld (1984) and many others suggest to

back out Vt and σ by numerically solving a system of two equations. The first

equation relates the equity price to asset value, time and asset volatility:

Et = f(Vt, t) (18)

where f(x, t) is the Black-Scholes pricing function for a European call with

strike K and maturity T . The second equation relates the equity price to asset

and equity volatility, the Delta of equity, and asset value:

Et =
σ

σE
fx(Vt, t)Vt, (19)
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where a subscript on f refers to a partial derivative. This relation is obtained

from applying Itô’s formula to (18), yielding

df(Vt, t)

=

(
fx(Vt, t)µVt +

1

2
fxx(Vt, t)σ

2V 2
t + ft(Vt, t)

)
dt + σfx(Vt, t)VtdWt, (20)

and comparing the diffusion coefficient to that of the equity value dynamics

dEt = µEEtdt + σEEtdWt.

The constant µE is the equity growth rate.

We can use (18) and (19) to “translate” a time series of equity values into

a time series of asset values and volatilities. As for the equity volatility, we can

use the empirical standard deviation of equity returns, or implied volatilities

from options on the stock. Given a time series of asset returns, the empirical

growth rate yields an estimate of µ and hence the market price of credit risk

(16). Further, given asset return time series of several firms, asset correlation

can be estimated. Alternatively, we can introduce a linear factor model for

normally distributed asset returns, which expresses the idea that firms share

a common dependence on general economic factors:

log

(
V i

T

V i
0

)
= wiψi + εi.

Here ψi is a normally distributed systematic factor, which can be constructed as

a weighted sum of global, country and industry specific factors. The constant

wi is the factor loading, and expresses the linear correlation between asset

returns and the systematic factors. The εi are (mutually) independent normally

distributed factors, which capture idiosyncratic risk in asset returns. The asset

correlation is now determined through the factors loadings, see Crouhy, Galai

& Mark (2000) for details.

This calibration procedure is not entirely satisfying. First, equation (19)

is redundant: it was already used in deriving the equity pricing function (18).

Second, equity volatility is typically estimated as the empirical standard devia-

tion of equity returns, although (20) clearly shows that it is random, depending

on asset value and time. This restriction is in fact necessary to obtain a unique

solution to the system (18) and (19). Third, the distributions of the estima-

tors are not readily available, making it hard to judge their statistical quality.

18



Fourth, the standard estimate of the firm growth rate is very poor: it is based

on two asset return observations only.

An alternative maximum likelihood estimation procedure is based on the

framework proposed by Duan (1994). Here we consider equity price data

as transformed asset price data, with the equity pricing function defining

the transformation. Suppose we observe a time series of daily equity values

(Ei)i=1,2,...,n; we drop the time index for clarity. Letting ∆t = 1/240, the like-

lihood function can be derived as

L(E1, . . . , En) =
n−1∏
i=1

1√
2π∆tσV i+1|fx(V i+1, 0, σ)|e

− 1
2σ2∆t

[
log

(
V i+1

V i

)
−m∆t

]2

where V i is given as the solution of the equation

Ei = f(V i, 0, σ), (21)

if a unique solution exists. Here f is the equity pricing function with asset

value, time and asset volatility as arguments. It is given through the under-

lying structural credit approach. While a unique solution to (21) exists in the

classical approach, it is unclear to us whether such a solution exists in the

first passage approach. The estimates m̂ and σ̂ are the parameter values that

maximize logL given the equity time series. Note that we obtain an estimate

of the firm growth rate, enabling us to obtain an estimate of the market price

of credit risk via (16). Given σ̂, estimates of asset values V̂ i are obtained as

the solutions to Ei = f(V̂ i, 0, σ̂), if such solutions uniquely exist. Duan (1994)

shows that these estimators are asymptotically normal. Duan, Gauthier, Si-

monato & Zaanoun (2003) extend this procedure to a setting with multiple

firms, and obtain estimates of asset correlations as well.

2.6 Can we predict the future?

To a certain extent, users of structural models implicitly assume they can. In

structural models, firm value is the single source of uncertainty that drives

credit risk. Investors observe the distance of default as it evolves over time.

If the firm value has no jumps, this implies that the default event is not a

total surprise. There are “pre-default events” which announce the default of

a firm. In the first passage approach, we can think of a pre-default event as

the first time assets fall dangerously close to the default barrier, see Figure

6. Mathematically, there is an increasing sequence of event times (τ(n)) that

converge to the default time τ ; we say the default is predictable.
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Figure 6: Announcing the default τ by a sequence (τ(n)) of

“pre-defaults” in the first-passage approach.

This predictability of default is not just a technical obscurity, but has

significant implications for the fitting of structural models to market prices.

First, since default can be anticipated, the model price of a credit sensitive

security converges continuously to its recovery value. Second, the model credit

spread tends to zero with time to maturity going to zero:

lim
T↓t

S(t, T ) = 0 (22)

almost surely, see Giesecke (2001b). Quite telling in this regard are the credit

spreads implied by the classical and first-passage approaches, see Figures 2

and 4. Both properties are at odds with intuition and market reality. Market

prices do exhibit surprise downward jumps upon default. Even for very short

maturities in the range of weeks, market credit spreads remain positive. This

indicates investors do have substantive short-term uncertainty about defaults,

in contrast to the predictions of the structural models.

3 Reduced form credit models

Reduced form models go back to Artzner & Delbaen (1995), Jarrow & Turnbull

(1995) and Duffie & Singleton (1999). Here we assume that default occurs
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without warning at an exogenous default rate, or intensity. The dynamics of

the intensity are specified under the market-implied probability. Instead of

asking why the firm defaults, the intensity model is calibrated from market

prices.

3.1 Default intensity

In the structural approach, the dynamics of default are derived from the def-

inition of default in terms of assets and liabilities. Lacking an economic de-

fault definition, we prescribe these dynamics exogenously, directly under the

market-implied probability Q. The problem can be cast in the framework of

point processes. Taking as given the random default time τ , we define the

default process N by

Nt = 1{τ≤t} =

{
1 if τ ≤ t

0 if else.

This is a point process with one jump of size one at default.

Since the default process is increasing, it has an upward trend: the condi-

tional probability at time t that the firm defaults by time s ≥ t is as least as

big as Nt itself. A process with this property is called a submartingale. A pro-

cess with zero downward trend is called a martingale. This is a “fair” process

in the sense that the expected gain or loss is zero.

The Doob-Meyer decomposition theorem enables us to isolate the upward

trend from N . This fundamental result states that there exists an increasing

process Aτ starting at zero such that N − Aτ becomes a martingale, see Del-

lacherie & Meyer (1982). The unique process Aτ counteracts the upward trend

in N ; it is therefore often called compensator.

Interestingly, the analytic properties of the compensator correspond to the

probabilistic properties of default. For example, the compensator is continuous

if and only if the default time τ is unpredictable. In this case the default comes

without warning; a sequence of announcing pre-default times does not exist.

This is a desirable model property as we shall see, since it allows to fit the

model to market credit spreads.

The compensator describes the cumulative, conditional likelihood of de-

fault. In the reduced form approach to credit, the compensator is parameterized

through a non-negative process λ by setting Aτ
t = Amin(t,τ) with

At =

∫ t

0

λsds. (23)
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With this assumption, λt describes the conditional default rate, or intensity :

for small ∆t and t < τ , the product λt ·∆t approximates the market-implied

probability that default occurs in the interval [t, t+∆t). Any given non-negative

process λ can be used to parameterize the dynamics of default. No economic

model of firm default is needed for this purpose any more!

Example 3.1. Suppose λ is a constant. Then N is a homogeneous Poisson

process with intensity λ, stopped at its first jump. Thus τ is exponentially

distributed with parameter λ and the market-implied default probability is

given by

q(T ) = 1− e−λT .

Given the default probability, we can calculate the intensity as

λ =
d(T )

1− q(T )

where d is the density of q. In view of this representation, in the statistics

literature λ is often called hazard rate.

Example 3.2. Suppose λ = λ(t) is a deterministic function of time t. Then

N is an inhomogeneous Poisson process with intensity function λ, stopped at

its first jump. The default probability is given by

q(T ) = 1− e−
∫ T
0 λ(u)du.

A simple but useful parametric intensity model is

λ(t) = hi, t ∈ [Ti−1, Ti), i = 1, 2, . . . (24)

for constants hi and Ti, which can be calibrated from market data.

Example 3.3. Suppose that λ = (λt) is a stochastic process such that con-

ditional on the realization of the intensity, N is an inhomogeneous Poisson

process stopped at its first jump. Then N is called a Cox process, or doubly-

stochastic Poisson process. The conditional default probability given the inten-

sity path up to time T is given by 1− exp(− ∫ T

0
λudu). By the law of iterated

expectations we find the default probability

q(T ) = 1− EQ[e−
∫ T
0 λudu].
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Lando (1998) introduces this framework to model default as the first time

a continuous-time Markov credit rating chain U with state space {1, . . . , Y }
hits the absorbing state Y . State 1 is interpreted as the highest credit rating

category, state Y − 1 is interpreted as the lowest rating before default, and

state Y is the default state. The dynamics of U are described by a generator

matrix Λ with transition intensities λi,j(Xt), which are modeled as (continuous)

functions of some state process X:

Λt =




−λ1(Xt) λ1,2(Xt) . . . λ1,Y (Xt)

λ2,1(Xt) −λ2(Xt) . . . λ2,Y (Xt)
...

λY−1,1(Xt) −λY−1,2(Xt) . . . λY−1,Y (Xt)

0 0 . . . 0




where

λi(Xt) =
Y∑

j=1,j 6=i

λi,j(Xt), i = 1, . . . , Y − 1.

The state process “drives” the risk of rating transitions. For small ∆t we can

think of λi,j(Xt)∆t as the probability that the firm currently in rating class i

will migrate to class j within the time interval ∆t. Consequently, λi(Xt)∆t is

the probability that there will be any rating change in ∆t for a firm currently in

class i. This generalizes Jarrow, Lando & Turnbull (1997), where the transition

intensities λi,j are assumed to be constant. With τ = inf{t ≥ 0 : Ut = Y }, the

process N is a Cox process with random default intensity λt = λUt,Y (Xt) at

time t. Note that the default intensity is represented by the last column in the

above generator matrix Λ.

Example 3.4. Suppose that λ = (λt) is a basic affine stochastic process with

dynamics under the market-implied probability given by

dλt = κ(λ̄− λt)dt + σ
√

λtdWt + dJt. (25)

Here, W is a standard Brownian motion which drives the continuous changes

of the issuer’s credit quality over time; the parameter σ controls the diffusive

fluctuations. Abrupt and unexpected changes in the credit quality are mod-

eled through the independent compound Poisson process J with jump arrival

intensity j and jump size that is independent and exponentially distributed

with mean ν. The parameter λ̄ controls the long-run mean, and κ controls
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the speed of mean-reversion: we have EQ[λt] → λ̄ + jν/κ as t → ∞. Under

technical conditions stated in Duffie, Schroder & Skiadas (1996), for general

stochastic intensities the default probability is given by

q(T ) = 1− EQ[e−
∫ T
0 λudu]. (26)

For the dynamics (25), this can be calculated in closed-form as

q(T ) = 1− e(a+bλ0)T ,

where a and b are explicitly given in Duffie & Garleanu (2001). A special case of

(25) is the square-root diffusion model of Cox, Ingersoll & Ross (1985), where

j = 0. Other tractable affine intensity models include the Ornstein-Uhlenbeck

process of Vasicek (1977) and the class of jump diffusion processes discussed

in Duffie, Pan & Singleton (2000).

These examples constitute only a small sample of possible parameteriza-

tions of the default intensity. There are many more choices, often borrowed

from the classical term structure models based on the short term interest rate.

This is motivated by the close analogy of defaultable term structure models

and classical, non-defaultable term structure models to which we turn next.

3.2 Valuation

The description of the default dynamics through the market-implied default

intensity λ leads to tractable valuation formulas. Below, we describe several

different specifications of these formulas corresponding to different units for

the value recovered by investors at default. We refer to Duffie & Singleton

(2003) for a clear, detailed discussion of this material.

We consider a zero coupon bond paying 1 at maturity T if there is no

default and R at T if the firm defaults before time T . Here the variable R ∈
[0, 1] specifies the recovery of face value on the bond. With constant interest

rates and constant recovery, the bond price is

BT
0 = e−rT EQ[R1{τ≤T} + 1{τ>T}] = e−rT − e−rT (1−R)q(T ) (27)

where q(T ) is the market-implied default probability. As in (13), the value

of the bond is the value of an otherwise equivalent riskfree bond minus the

present value of the default loss. If the intensity is constant (Example 3.1) and

recovery is zero, we obtain

BT
0 = e−rT (1− q(T )) = e−(r+λ)T . (28)

24



This means the value of the defaultable bond is calculated as if the bond were

riskfree by using a default-adjusted discount rate. The new discount rate is the

sum of the riskfree rate r and the intensity λ. This parallel between pricing

formulas for defaultable bonds and otherwise equivalent default free bonds is

one of the best features of reduced form models. As we discuss below, the

parallel extends to more complicated securities.

A second specification of recovery at default is called equivalent recovery.

Here bond investors receive at τ a fraction R ∈ [0, 1] of an equivalent but

default-free bond. Assuming constant recovery the bond price is

BT
0 = EQ[e−rτRe−r(T−τ)1{τ≤T} + e−rT 1{τ>T}]

= e−rT EQ[(1−R)1{τ>T} + R]

= e−rT (1−R)(1− q(T )) + e−rT R (29)

which is the value of 1 − R zero recovery defaultable bonds plus the value of

R riskfree zero bonds. It is easy to see that (29) is equal to (27).

In the fractional recovery scheme investors receive at τ a fraction R ∈ [0, 1]

of the bond’s market value just before default. Mathematically, this value is

BT
τ− = limt↑τ BT

t . In this setup, the bond price is

BT
0 = EQ[e−rτRBT

τ−1{τ≤T} + e−rT 1{τ>T}]. (30)

If the recovery and intensity are constant,

BT
0 = e−(r+(1−R)λ)T . (31)

This is the value of a zero recovery defaultable bond when the issuer’s default

intensity is “thinned” to λ(1 − R). The intuition behind (31) is as follows.

Suppose the bond defaults with intensity λ. At default, the bond becomes

worthless with probability (1 − R), and its value remains unchanged with

probability R. Clearly, the pre-default value BT
τ− of the bond is not changed

by this way of looking at default. Consequently, for pricing we can ignore the

“harmless” default, which occurs with intensity λR. We then price the bond

as if it had zero recovery and a default intensity λ(1−R). Formula (31) is then

implied by (28).

The results for the valuation of more complex credit sensitive securities

are analogous. We consider a credit sensitive security specified by the triple

(T, cT , R). It pays the amount cT at T if no default occurs before T , the matu-

rity of the security. In case of default, investors receive a (random) fraction of
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the security’s pre-default value. It is modeled with a stochastic process R. If

default occurs at time τ , the recovery fraction is Rτ ∈ [0, 1]. Under technical

conditions stated in Duffie & Singleton (1999), the security price is given by

the convenient formula

e−rT EQ
[
cT e−

∫ T
0 (1−Rs)λsds

]
. (32)

Also in the general case a credit sensitive security can be valued as if it were

not sensitive to credit risk by using an adjusted rate for discounting payoffs.

We take a closer look at the credit spreads implied by reduced form mod-

els. In case recovery is zero and some technical conditions are satisfied, we can

show that

lim
T↓t

S(t, T ) = λt

almost surely. This should be contrasted with the structural models, where

the spread goes to zero with time to maturity going to zero, see (22). In

the reduced form models the default event is unpredictable, it comes without

warning. There is always short-term uncertainty about the default event, for

which investors demand a premium. This premium, expressed in terms of yield,

is given by the intensity.

The unpredictability of default has another important consequence. In

line with empirical observation, the model price of a credit sensitive security

will abruptly drop to its recovery value upon default. This is in direct conflict

with the structural models considered above in which the price converges to

its default contingent value.

3.3 Default Correlation

In the reduced form model we can introduce cyclical default correlation by

assuming that firms’ default intensities are smoothly correlated through time.

An effective framework for this is the Cox process model of Example 3.3, ex-

tended to the multivariate case. Suppose that the indicator processes of the

default times τ1, . . . , τn with respective intensities λ1, . . . , λn form a multivari-

ate Cox process “driven” by some state process X. The state process includes

the systematic, economy-wide and idiosyncratic factors driving the credit risk

of firms. Conditional on X, firm defaults are independent. Joint survival prob-

abilities can be calculated by observing that the first default time τ = min τi
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has intensity λ1 + . . . + λn if τi 6= τj almost surely for i 6= j, which is satisfied

in the Cox process framework. Let 0 < T1 ≤ . . . ≤ Tn be given horizons. Then

Q[τ1 > T1, . . . , τn > Tn] = EQ[e−
∫ Tn
0

∑
i:Ti>s λi

sds],

which is easily calculated in the basic affine setting of Example 3.4. Of course,

standard arguments yield also the joint default probability q.

We can take advantage of the default copula C corresponding to q the

same way we did within the structural models by calculating C(u1, . . . , un) =

q(q−1
1 (u1), . . . , q

−1
n (un)), where q−1

i is the (generalized) inverse of the individual

market-implied default probability qi of firm i. The specific copula will depend

on the particular choice of the functional form of the λi. More generally, we

can use any copula to build tractable models for correlated defaults. Together

with arbitrary marginal default probabilities qi, any copula C specifies a proper

joint default probability q via

q(T1, . . . , Tn) = C(q1(T1), . . . , qn(Tn)).

We can use, for example, the Gaussian copula corresponding to the struc-

tural joint default probability (14) together with reduced form marginal de-

fault probabilities from Examples 3.1 through 3.4. This is a popular modeling

choice in practice, since the asset correlations parameterizing the Gaussian

copula are relatively easy to come by. It is somewhat inconsistent however,

given the incompatible assumptions of the models underlying the copula and

the marginals. Alternatively we may choose some parametric copula family

and combine it with some marginal default probability model. This has some

drawbacks as well. Due to the lack of data allowing to infer default correlation,

calibration of the copula parameters is quite difficult. Most importantly, the

choice of the copula is arbitrary–there is no “natural choice.” This introduces

a large amount of model risk, since different copulas lead to quite different

joint default characteristics. In lack of empirical data of correlated defaults,

it is hard to say which characteristics are natural. For a discussion of these

model risk issues we refer to Frey & McNeil (2004).

Taking account of contagious default correlation is not an easy exercise.

The idea is that there are correlated jumps in firms’ default intensities, cor-

responding to the correlated jumps we observe in credit spreads. A variant of

this assumes that there are market-wide events that can trigger joint defaults,

see Duffie & Singleton (1998) and Giesecke (2003). Another variant assumes
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that the default intensity of a firm depends explicitly on the default status of

related counterparty firms in the market. A parametrization of this idea is

λi
t = hi

t +
∑

j 6=i

ajN j
t

see Jarrow & Yu (2001). Here hi is the base default intensity and N j is the

default indicator process of firm j. The parameters aj are chosen such that λi

is non-negative. To avoid running into a circularity problem, one can suppose

that only the default of designated “primary” firms has an effect on other,

“secondary” firms.

While Jarrow & Yu (2001) focus on the pricing of credit sensitive securities

in the presence of contagion effects, it is difficult to calculate joint default

probabilities and portfolio loss distributions within this approach. As Davis

& Lo (2001) and Giesecke & Weber (2003) show, one can obtain tractable

closed-form characterizations of loss distributions at the cost of more restricting

assumptions, which relate to the homogeneity of firms and the symmetry in

their counterparty relations.

3.4 Calibration

Reduced form models are typically formulated directly under the market-

implied probability. This suggests that we calibrate directly from market prices

of various credit sensitive securities. One often uses liquid debt prices or credit

default swap spreads, although Jarrow (2001) argues that equity is a good

candidate as well. Depending on the characteristics of the calibration security,

it may be necessary to make parametric assumptions about the recovery pro-

cess as well. With fractional recovery and zero bonds for example, the problem

is to choose the parameters of the adjusted short rate model r + (1 − R)λ

such that model bond prices (32) best fit observed market prices. Here one

can either parameterize the adjusted short rate directly or specify the compo-

nent processes separately. With a separate specification identification problems

may arise, since only the product (1−R)λ enters the pricing formula (32). In

general, in the estimation problem one can draw from the experience related

to non-defaultable term structure models, given the close analogy to reduced

form defaultable models. We refer to Dai & Singleton (2003) for an overview of

available techniques. Standard methods include maximum likelihood and least

squares.
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4 Incomplete information credit models

The incomplete information framework provides a common perspective on

the structural and reduced form approaches to analyzing credit. This per-

spective enables us to see models of both types as members of a common

family. This family contains previously unrecognized structural/reduced form

hybrids, some of which incorporate the best features of both traditional ap-

proaches. Incomplete information credit models were introduced by Duffie &

Lando (2001), Giesecke (2001b) and Çetin, Jarrow, Protter & Yildirim (2002).

A non-technical discussion of incomplete information models is in Goldberg

(2004).

4.1 Default trend

Underlying all credit models is the increasing default process N and its upward

trend A. Thanks to the Doob-Meyer decomposition, the trend can be isolated

from the default process. The difference is a martingale, a fair process whose

expected gains or losses are zero. The trend represents the fair cumulative

compensation for the short-term credit risk embedded in the default process.

If there is short-term uncertainty about default in any state of the world, the

trend can be used to estimate default probabilities and price credit sensitive

securities.

In traditional structural models default can be anticipated. In this case

there is no short-term credit risk that would require compensation. Corre-

spondingly, the trend is trivially given by the default process itself. In reduced

form models, it is assumed that default cannot be anticipated, so there is short-

term credit risk by assumption. The non-trivial trend is directly parameterized

through the intensity:

At =

∫ t

0

λsds, (33)

which defines the trend as the cumulative default intensity. In this situation the

dynamics of model default probabilities and security prices are immediately

implied by the exogenous intensity dynamics.

Instead of focusing on the default intensity and making ad-hoc assump-

tions about its dynamics, incomplete information models seek to specify the

trend based on a model definition of default. Here we provide an endogenous
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characterization of the trend in terms of a firm’s assets and liabilities via an un-

derlying structural model. But this works only if we can modify the underlying

structural model to admit short-term credit risk.

There are two approaches to introduce short-term uncertainty into struc-

tural models. The first is to allow for “surprise” jumps in the firm value, as in

Zhou (2001b), Hilberink & Rogers (2002) and Kijima & Suzuki (2001). In this

situation there is always a chance that the firm value jumps below the default

barrier. This cannot be anticipated. However, there is also a chance that the

firm just “diffuses” to the barrier, as in the traditional models with continuous

value process. Here default can be anticipated. So depending on the state of

the world, there may or may not be short-term credit risk.

There is another approach that guarantees default cannot be anticipated

so there is short-term credit risk in any state of the world. This approach

arises through a re-examination of the informational assumptions underlying

the traditional structural models. In these models, it is implicitly assumed that

the information we need to calibrate and run the model is publicly available.

This information includes the firm value process and its parameters as well as

the default barrier. In the incomplete information framework, we address the

fact that in reality, our information about these quantities is imperfect. The

information we have is much coarser than the idealized traditional structural

models suggest, as highlighted by the high profile scandals at Enron, Tyco

and WorldCom. Concretely this means that we may not be sure either of the

true value of the firm or of the exact condition of the firm that will trigger

default. It follows that we are always uncertain about the distance to default.

Thus, default is a complete surprise: it cannot be anticipated. The non-trivial

trend, which represents the compensation for the associated short-term credit

risk, can always be characterized explicitly in terms of firm assets and default

barrier. Here are two case studies.

Example 4.1 (I2 credit model). Suppose default is described by the first

passage model of Section 2.2. Assume that we cannot observe the default time-

independent barrier D. Let D be independent with continuous distribution

function G on (0, V0). Giesecke (2001b) shows that the trend A is given by

At = − log G(Mt) (34)

where, as above, Mt is the historical low of firm value at time t. In view of (33),

we need only differentiate the trend to get the intensity. Under the assumption
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that G is differentiable, the derivative of A is however zero almost surely. This

means that we cannot write the trend as in (33) in terms of an intensity.

Example 4.2. In the first passage model of Section 2.2, suppose we do not

observe the firm value directly but instead receive noisy asset reports from

time to time. Let f(·, t) be the conditional density of the log-firm value at

time t on (d, 0) where d = log(D/V0). Duffie & Lando (2001) show that

At =
1

2
σ2

∫ t

0

fx(d, s)ds

Here an intensity exists and is given by λt = 1
2
σ2fx(d, t).

The trend is the key to the calculation of default probabilities and prices

of credit sensitive securities. Under technical conditions stated in Giesecke

(2001b), we have the generalized reduced form formula

q(T ) = 1− EQ[e−AT ] (35)

where A is the default trend under the market-implied probability Q. This

formula simplifies to the reduced form formula (26) if the trend admits an

intensity. There are closed form expressions for q(T ) in some cases.

Example 4.3 (I2 credit model). Suppose the default barrier D is uniform

on (0, V0). We have for the market-implied default probability

q(T ) = 1 +

(
σ2

2r
− 1

)
Φ

(
ν
√

T

σ

)
− erT

(
1 +

σ2

2r

)
Φ

(
−ν̄
√

T

σ

)
(36)

where ν = r − σ2/2 and ν̄ = r + σ2/2.

We reconsider the fractional recovery credit sensitive security specified

by the triple (T, cT , R), that we introduced in Section 3.2. Under technical

conditions stated in Giesecke & Goldberg (2003b), we have for the security’s

pre-default value the generalized reduced form formula

e−rT EQ
[
cT e−AT (R)

]
(37)

where At(R) =
∫ t

0
(1−Rs)dAs is the fractional recovery trend. More precisely, it

is the upward trend of the default process (1−Rτ )N under fractional recovery.

If the trend admits an intensity, (37) simplifies to (32).
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Figure 7: Term structure of credit spreads, varying asset

volatility σ in the I2 model.

The incomplete information models share many of the good properties

of both structural and reduced form models while avoiding their difficulties.

While built on an intuitive and economically meaningful structural approach,

default cannot be anticipated as in the traditional structural models. This has

several desirable consequences. First, any incomplete information model ad-

mits a non-trivial trend that can be characterized explicitly. The trend can be

used to calculate default probabilities and prices of credit sensitive securities

through tractable generalized reduced form formulas. In the traditional struc-

tural models these convenient reduced form formulas fail. Second, consistent

with empirical observations, prices of credit sensitive securities drop abruptly

to their recovery values upon default. Third, short-term credit spreads are typ-

ically bounded away from zero. To illustrate this, we consider a zero recovery

zero bond with face value 1 maturing at T . The bond is priced at e−rT (1−q(T )).

Letting r = 6%, in Figure 7, we plot the corresponding credit spreads

S(0, T ) = − 1

T
log

(
1− q(T )

)
, T > 0,

in the I2 model. Giesecke & Goldberg (2003a) calibrate the I2 model from

market data and further analyze its empirical properties. In particular, the

I2 model output is empirically compared to a traditional first passage model.

Two main conclusions can be drawn. The I2 model reacts more quickly since
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it takes direct account of the entire history of public information rather than

just current values. This can be seen from the structure of the trend in (34):

it depends on the historical low of the firm value. Furthermore, the I2 model

predicts positive short spreads for firms in distress. The traditional first passage

model always predicts that short spreads are zero.

4.2 Dependent defaults

Since incomplete information models are based on the structural approach, we

can model cyclical default correlation through firm value correlation.

Contagious default correlation arises very naturally with incomplete in-

formation. Consider the I2 model. As discussed in detail in Giesecke (2001a),

with defaults of firms arriving over time, we learn about the unobserved default

barriers of the surviving firms. This means we update the distribution we put

on a firm’s default barrier with the information we extract from the unantici-

pated defaults of counterparty firms, and re-assess firms’ default probabilities.

The situation in which we do not directly observe firm values (Example 4.2) is

very similar; it is analyzed in Collin-Dufresne, Goldstein & Helwege (2002). In

both scenarios the “contagious” jumps in credit spreads we observe in credit

markets are implied by informational asymmetries.

The same way we introduced the trend in the single firm case to estimate

default probabilities and prices of securities, we can develop the concept of

the trend in a situation with multiple firms under incomplete information.

The trend can then be used to estimate prices of securities that depend on the

credit risk of multiple firms. It can also be used to construct efficient simulation

algorithms for the simulation of correlated default events. This analysis is

carried out in Giesecke (2002).

4.3 Credit premium

The credit risk premium is the mapping between the actual probability P and

the market-implied probability Q. To understand the structure of the premium,

we examine the dynamics of firm value and corporate liabilities in the I2 model.

We argued above that thanks to the unpredictability of default, prices of credit

sensitive claims including firm equity and debt drop precipitously at default.

Empirical observation shows that equity drops to near zero. This makes sense

since equity holders have no stake in the firm after default. The value of the

bonds is diminished by bankruptcy costs, which is described by some fractional
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Figure 8: Firm value in the incomplete information model.

recovery process R. Consequently, firm value, which is equal to the sum of

equity and debt values, also drops at default. This is shown in Figure 8. If

default were to occur at time t, the combined default losses in equity and debt

value relative to V are given by

Jt =
1

Vt−

(
Et− + (1−Rt) ·Bt−

)
.

Here E denotes the value of equity and B denotes the value of the bonds. If

prior to default firm value follows a geometric Brownian motion, then the firm

value process can hence be written as the jump diffusion

dVt

Vt−
= µdt + σdWt − JtdNt. (38)

This shows that there are two sources of uncertainty related to firm value. The

first is the diffusive uncertainty represented by the volatility σ. The second is

the uncertainty associated with the downward jump in firm value at default.

The density describing the relation between the probabilities P and Q is

now richer than (15) as Giesecke & Goldberg (2003b) show in the context of the

I2 model. As in the traditional structural models, the density is parameterized

by the risk premium. In the incomplete information models the risk premium

can be decomposed into to components, which correspond to the two sources

of uncertainty. The diffusive risk premium α compensates investors for the
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diffusive uncertainty in firm value. As in the traditional structural models, it

is realized as a change to the drift term in firm value dynamics: µ− r = αtσ.

The default event risk premium β is not present in the traditional structural

models. It compensates investors for the jump uncertainty in firm value and

is realized as a change to the default probability. Driessen (2002) empirically

confirms that this event risk premium is a significant factor in corporate bond

returns.

In Giesecke & Goldberg (2003b), it is shown that the assumption of no

arbitrage is realized in the mathematical relationships among α, β, the recovery

rate assumed by the market, and the coefficients of the price processes of

traded securities. The price processes depend explicitly on the leverage ratio,

so the premia α and β do as well. In this case the density depends on firm

leverage. As Giesecke & Goldberg (2004b) discuss, this violates an important

condition for the Modigliani & Miller (1958) theorem. The I2 model is therefore

not consistent with the Modigliani-Miller theorem. It provides a new way to

measure the deviation of real markets from the idealized markets in which the

Modigliani-Miller theorem holds.

The structure of the incomplete information risk premium is analogous to

the risk premium in reduced form models considered in El Karoui & Martellini

(2001) and Jarrow, Lando & Yu (2003). The diffusive premium related to the

firm value process corresponds to a premium for diffusive risk in the default

intensity process. The event risk premium is analogous to the default event risk

premium in intensity based models. However, in the incomplete information

setting it is defined in the general reduced form context where an intensity

need not exist. Interestingly, Jarrow et al. (2003) show that in the multi-firm

intensity based Cox model of Section 3.3, where defaults are conditionally

independent, the default event risk premium asymptotically diversifies away.

4.4 Calibration

There is a lively debate in the literature concerning which data should be used

to calibrate credit. Jarrow (2001) points to a division between structural and

reduced form modelers on this issue. Traditionally, structural models are fit to

equity markets and reduced form models are fit to bond markets. Jarrow (2001)

argues that the equity and bond data can be used in aggregate to calibrate a

credit model and he gives a recipe for doing this in a reduced from setting.
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Giesecke & Goldberg (2004a) apply the reasoning in Jarrow (2001) to cal-

ibrate the I2 model. The estimation procedure makes use of historical default

rates in conjunction with data from equity, bond and credit default swap mar-

kets. Huang & Huang (2003) give empirical evidence that structural models

yield more plausible results if calibrated to both kinds of data. Importantly,

the physical and market-implied probabilities are fit simultaneously. The out-

put of the calibration includes estimates of the risk premium, market implied

recovery, model security prices and physical probabilities of default.

One issue addressed in Giesecke & Goldberg (2004a) is the relationship

between model and actual capital structures. In the classical setting, equity

is a European option with strike price and date equal to the face value and

maturity of a zero bond. This model is internally consistent. However, it fits

market data only to the extent that firm debt can be adequately represented as

a zero bond. Giesecke & Goldberg (2004a) make use of the flexibility imparted

by incomplete information to give a more realistic picture of equity. Specifically,

equity is a perpetual down and out call with a stochastic strike price. This

approach sidesteps the intractable problem of describing a complex capital

structure in terms of a single face value and maturity date.
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